J Cancer 2017; 8(9):1586-1597. doi:10.7150/jca.18735 This issue


Redox Imbalance in the Development of Colorectal Cancer

Hao Liu1, Xin Liu1, Chundong Zhang1, Huifang Zhu1, Qian Xu2, Youquan Bu1✉, Yunlong Lei1✉

1. Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China;
2. Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan 637000, China.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Liu H, Liu X, Zhang C, Zhu H, Xu Q, Bu Y, Lei Y. Redox Imbalance in the Development of Colorectal Cancer. J Cancer 2017; 8(9):1586-1597. doi:10.7150/jca.18735. Available from https://www.jcancer.org/v08p1586.htm

File import instruction


Redox imbalance is resulted from the destruction of balance between oxidants and antioxidants. The dominant oxidants are reactive oxygen species (ROS), which are involved in multiple cellular processes by physiologically transporting signal as a second messenger or pathologically oxidizing DNA, lipids, and proteins. Generally speaking, low concentration of ROS is indispensable for cell survival and proliferation. However, high concentration of ROS is cytotoxic. Additionally, ROS are now known to induce the oxidative modification of macromolecules especially proteins. The redox modification of proteins is involved in numerous biological processes related to diseases including CRC. Herein, we attempt to afford an overview that highlights the crosstalk between redox imbalance and CRC.

Keywords: CRC, oxidative stress, redox modification, cysteine residues.