J Cancer 2016; 7(11):1441-1451. doi:10.7150/jca.15556 This issue


Genomic/Epigenomic Alterations in Ovarian Carcinoma: Translational Insight into Clinical Practice

Anliang Dong1, Yan Lu1, Bingjian Lu2✉

1. Women's Hospital & Institute of Translational Medicine, School of Medicine, Zhejiang University, China;
2. Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, China.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Dong A, Lu Y, Lu B. Genomic/Epigenomic Alterations in Ovarian Carcinoma: Translational Insight into Clinical Practice. J Cancer 2016; 7(11):1441-1451. doi:10.7150/jca.15556. Available from https://www.jcancer.org/v07p1441.htm

File import instruction


Ovarian carcinoma is the most lethal gynecological malignancy worldwide. Recent advance in genomic/epigenomic researches will impact on our prevention, detection and intervention on ovarian carcinoma. Detection of germline mutations in BRCA1/BRCA2, mismatch repair genes, and other genes in the homologous recombination/DNA repair pathway propelled the genetic surveillance of most hereditary ovarian carcinomas. Germline or somatic mutations in SMARCA4 in familial and sporadic small cell carcinoma of the ovary, hypercalcemia type, lead to our recognition on this rare aggressive tumor as a new entity of the atypical teratoma/rhaboid tumor family. Genome-wide association studies have identified many genetic variants that will contribute to the evaluation of ovarian carcinoma risk and prognostic prediction. Whole exome sequencing and whole genome sequencing discovered rare mutations in other drive mutations except p53, but demonstrated the presence of high genomic heterogeneity and adaptability in the genetic evolution of high grade ovarian serous carcinomas that occurs in cancer progression and chemotherapy. Gene mutations, copy number aberrations and DNA methylations provided promising biomarkers for the detection, diagnosis, prognosis, therapy response and targets of ovarian cancer. These findings underscore the necessity to translate these potential biomarkers into clinical practice.

Keywords: ovarian carcinoma, mutation, hereditary, whole genome sequencing, whole exome sequencing, methylation.